thanks for your good guide,that was so useful.

but i cant calculate the angel in degree.

I receive numbers between -1 to 1 from serial port, but I don’t know how to convert them to degree.

I want to convert them to degree and use for Quadrotor controller.

please help me…

i am worried my traces at 8mils will be too thin, i’m about to find out!

what is the resolution of your printer?

]]>This place still alive? :) Anyway, I am curious as Rudy already asked, would it work with more modern ADXL335 modules? I guess it would, they also have analog outputs (but 3 axis), maybe I will just order and try.

Another question, is there maybe successor to this project somewhere? More axis, more buttons, etc? I know "EdTracker" for axis, but would be interesting in combinations with lots of buttons :) Thanks! ]]>

I was wondering if I can use thic circute to generate picosecond pulses with high current(1-10A) and connect it with high power semiconductor laser noting that the the threshold current is around 3A,

]]>I was hasty in my last post. Your method won't work in either example.

Again sorry for spamming

]]> I did want to mention, that in the written scenario I gave where r lied on the z axis and we rotated around z and x simultaneously, can be expanded as you suggested above. That was a bad example……

However that again will not work in general. For example try doing that for the scenario above where w=[1,1,1] and r = [1,2,3].

Sorry for spamming. I just felt I had to clear this up.

Thanks again for the convo.

]]> Try to figure out the matrix proof… It's all that is needed.

0 r3 -r2 w1

R =-r3 0 r1 , w2 = W

r2 -r1 0 w3

If R is a 3×3 matrix and w is a 3×1 matrix R .W = R X W *where "." represents matrix multiplication

R . W = V

Therefore

R^-1 .V = W

but R is singular and therefore not invertible. So this can't be solved

]]>

w x r becomes (wo + wp) x r = w0 x r + wp x r , but wp x r is 0 since wp || r thus you end up with w0 x r where w0 is orthogonal with r.

so the rotation that the object is subject to does not have to be orthogonal to r , but we will only sense the component that is orthogonal to the Z axis with an accelerometer, you can improve somehow the algorithm by decomposing the gyro reading int two components as described above and using complimentary filter only on the compoennt that is orthogonal to r .

I am aware of the the situation you described. In this case the acceleromer's weight of the reading will act as a low-pass filter rather than giving a more exact reading of orientation. In practice this works out ok, especially when a magnetometer is used as well, things tend to average out.

]]>

Or is there a particular reason you're insisting upon this?

The formula you provided is for a unique situation where r is orthogonal to w. This is not the general case. Your formula will not work in general. It will only work in the special case where w is orthogonal to r.

]]>In your example w = (1,1,1) r = (1,2,3) are not orthogonal because their dot product is not zero:

https://www.wolframalpha.com/input/?i=Dot+%5B%7B1,1,1%7D+,%7B1,2,3%5D

]]>https://en.wikipedia.org/wiki/Talk:Angular_velocity

Scroll down to non-circular motion.

The Matrix proof above is enough however.

Thanks for the convo.

But the cross product can be written as a matrix equation.

]]>r = (1,2,3)

w X r = v = (1,-2,1)

v X r = (8,2,-4) *which is not in the same direction as w