
DCM TUTORIAL – AN INTRODUCTION TO 
ORIENTATION KINEMATICS (REV 0.1) 

Introduction 

This article is a continuation of my IMU Guide, covering additional orientation kinematics 

topics. I will go through some theory first and then I will present a practical example with 

code build around an Arduino and a 6DOF IMU sensor (acc_gyro_6dof). The scope of this 

experiment is to create an algorithm for fusing gyroscope and accelerometer data in order 

to create an estimation of the device orientation in space. Such an algorithm was already 

presented in part 3 of my “IMU Guide” and a practical Arduino experiment with code was 

presented in the “Using a 5DOF IMU” article and was nicknamed “Simplified Kalman Filter”, 

providing a simple alternative to the well known Kalman Filter algorithm. In this article we’ll 

use another approach utilizing the DCM (Direction Cosine Matrix). For the reader that is 

unfamiliar with MEMS sensors it is recommended to read Part 1 and 2 of the IMU Guide 

article. Also for following the experiments presented in this text it is recommended to 

acquire an Arduino board and an acc_gyro_6dof sensor.  

Prerequisites 

No really advanced math is necessary. Find a good book on matrix operations, that’s all you 

might need above school math course. If you would like to refresh your knowledge below 

are some quick articles: 

Cartesian Coordinate System - http://en.wikipedia.org/wiki/Cartesian_coordinate_system 

Rotation - http://en.wikipedia.org/wiki/Rotation_%28mathematics%29 

Vector scalar product -  http://en.wikipedia.org/wiki/Dot_product 

Vector cross product - http://en.wikipedia.org/wiki/Cross_product 

Matrix Multiplication - http://en.wikipedia.org/wiki/Matrix_multiplication 

Block Matrix - http://en.wikipedia.org/wiki/Block_matrix 

Transpose Matrix - http://en.wikipedia.org/wiki/Transpose 

Triple Product - http://en.wikipedia.org/wiki/Triple_product 

Notations 

Vectors are marked in bold text - so for example “v” is a vector and “v” is a scalar (if you 

can’t distinguish the two there’s problem with the text formatting wherever you’re reading 

this). 

http://www.starlino.com/imu_guide.html
http://www.starlino.com/imu_kalman_arduino.html
http://www.gadgetgangster.com/367
http://en.wikipedia.org/wiki/Cartesian_coordinate_system
http://en.wikipedia.org/wiki/Rotation_%28mathematics%29
http://en.wikipedia.org/wiki/Dot_product
http://en.wikipedia.org/wiki/Cross_product
http://en.wikipedia.org/wiki/Matrix_multiplication
http://en.wikipedia.org/wiki/Block_matrix
http://en.wikipedia.org/wiki/Transpose
http://en.wikipedia.org/wiki/Triple_product


Part 1. The DCM Matrix 

Generally speaking orientation kinematics deals with calculating the relative orientation of 

a body relative to a global coordinate system.  It is useful to attach a coordinate system to 

our body frame and call it Oxyz, and another one to our global frame and call it OXYZ. Both 

the global and the body frames have the same fixed origin O (see Fig. 1).  Let’s also define i, 

j, k to be unity vectors co-directional with the body frame’s x, y, and z axes - in other words 

they are versors of Oxyz and let I, J, K  be the versors of global frame OXYZ.  

 

Figure 1 

Thus, by definition, expressed in terms of global coordinates vectors I, J, K can be written 

as: 

IG = {1,0,0} T,  JG={0,1,0} T  , KG = {0,0,1} T  

Note: we use {…} T  notation to denote a column vector, in other words a column vector is a 

translated row vector. The orientation of vectors (row/column) will become relevant once 

we start multiplying them by a matrix later on in this text. 

And similarly, in terms of body coordinates vectors i, j, k can be written as: 

iB = {1,0,0} T,  jB={0,1,0} T  , kB = {0,0,1} T 

Now let’s see if we can write vectors i, j, k in terms of global coordinates. Let’s take vector i 

as an example and write its global coordinates: 

iG = {ix
G , iy

G , iz
G} T 

Again, by example let’s analyze the X coordinate ix
G, it’s calculated as the length of 

projection of the i vector onto the global X axis.  



ix
G   =  |i| cos(X,i) =  cos(I,i) 

Where |i| is the norm (length) of the i unity vector and cos(I,i) is the cosine of the angle 

formed by the vectors I and i. Using the fact that |I| = 1 and |i| = 1 (they are unit vectors 

by definition). We can write: 

ix
G  = cos(I,i) = |I||i| cos(I,i)  = I.i   

Where I.i. is the scalar (dot) product of vectors I and i. For the purpose of calculating scalar 

product I.i  it doesn’t matter in which coordinate system these vectors are measured as 

long as they are both expressed in the same system, since a rotation does not modify the 

angle between vectors so:  I.i   = IB.iB = IG.iG =  cos(IB.iB)  = cos(IG.iG) , so for simplicity we’ll 

skip the superscript in scalar products I.i , J.j , K.k and in cosines  cos(I,i), cos(J,j), cos(K,k). 

Similarly we can show that: 

iy
G = J.i , iz

G=K.i , so now we can write vector i in terms of global coordinate system as: 

iG= { I.i,  J.i, K.i}T   

Furthermore, similarly it can be shown that jG= { I.j,  J.j, K.j} T  , kG= { I.k,  J.k, K.k} T. 

We now have a complete set of global coordinates for our body’s versors i, j, k and we can 

organize these values in a convenient matrix form: 

             

         
         
         

   

                          
                          
                          

          (Eq. 1.1) 

 

This matrix is called Direction Cosine Matrix for now obvious reasons - it consists of cosines 

of angles of all possible combinations of body and global versors.  

The task of expressing the global frame versors IG, JG, KG  in body frame coordinates is 

symmetrical in nature and can be achieved by simply swapping the notations I, J, K with i, j, 

k, the results being: 

IB= { I.i,  I.j, I.k}T  ,  JB= { J.i,  J.j, J.k}T  ,  KB= { K.i,  K.j, K.k}T   

and organized in a matrix form:  



             

         
         
         

   

                          
                          
                          

          (Eq. 1.2) 

 

It is now easy to notice that DCMB = (DCMG)T  or  DCMG = (DCMB)T , in other words the two 

matrices are translates of each other, we’ll use this important property later on.  

Also notice that DCMB. DCMG =  (DCMG)T .DCMG  = DCMB. (DCMB)T  = I3 , where I3  is the 3x3 

identity matrix. In other words the DCM matrices are orthogonal. 

This can be proven by simply expanding the matrix multiplication in block matrix form: 

                        
   

   

   

              

                  

                  

                  

  

 
   
   
   

       (Eq. 1.3) 

 

To prove this we use such properties as for example:  iGT. iG = | iG|| iG|cos(0)  = 1 and iGT. jG 

= 0 because (i and j are orthogonal) and so forth. 

The DCM matrix (also often called the rotation matrix) has a great importance in 

orientation kinematics since it defines the rotation of one frame relative to another. It can 

also be used to determine the global coordinates of an arbitrary vector if we know its 

coordinates in the body frame (and vice versa).  

Let’s consider such a vector with body coordinates: 

rB= { rx
B, ry

B, rz
B} T  and let’s  try to determine its coordinates in the global frame, by using a 

known rotation matrix DCMG.  

We start by doing following notation: 

rG = { rx
G , ry

G , rz
G } T.   

Now let’s tackle the first coordinate rx
G: 



rx
G = | rG| cos(IG,rG) ,  because rx

G is the projection of rG onto X axis that is co-directional 

with IG. 

Next let’s note that by definition a rotation is such a transformation that does not change 

the scale of a vector and does not change the angle between two vectors that are subject 

to the same rotation, so if we express some vectors in a different rotated coordinate 

system the norm and angle between vectors will not change: 

| rG| = | rB| , | IG| = | IB| = 1  and  cos(IG,rG) = cos(IB,rB), so we can use this property to write 

rx
G = | rG| cos(IG,rG) =  | IB || rB| cos(IB,rB) = IB. rB = IB. { rx

B, ry
B, rz

B} T  , by using one the two 

definition of the scalar product. 

Now recall that IB= { I.i,  I.j, I.k}T  and by using the other definition of scalar product: 

rx
G = IB. rB  = { I.i,  I.j, I.k}T . { rx

B, ry
B, rz

B} T   = rx
B I.i + ry

B I.j + rz
B I.k 

In same fashion it can be shown that: 

ry
G = rx

B J.i + ry
B J.j + rz

B J.k 

rz
G = rx

B K.i + ry
B K.j + rz

B K.k 

Finally let’s write this in a more compact matrix form: 

      

  
 

  
 

  
 

    

         
         
         

  

  
 

  
 

  
 

           (Eq. 1.4) 

 

Thus the DCM matrix can be used to covert an arbitrary vector rB expressed in one 

coordinate system B, to a rotated coordinate system G.  

We can use similar logic to prove the reverse process: 

             (Eq. 1.5) 

Or we can arrive at the same conclusion by multiplying both parts in  (Eq. 1.4) by  DCMB  

which equals to DCMGT, and using the property that DCMGT.DCMG = I3 , see (Eq. 1.3): 

DCMB rG = DCMB DCMG rB = DCMGT DCMG rB = I3 rB  = rB 



 

Part 2. Angular Velocity 

So far we have a way to characterize the orientation of one frame relative to another 

rotated frame, it is the DCM matrix and it allows us to easily convert the global and body 

coordinates back and forth using (Eq. 1.4) and  (Eq. 1.5).  In this section we’ll analyze the 

rotation as a function of time that will help us establish the rules of updating the DCM 

matrix based on a characteristic called angular velocity. Let’s consider an arbitrary rotating 

vector r and define it’s coordinates at time t to be r(t). Now let’s consider a small time 

interval dt and make the following notations:  r = r (t) ,  r’= r (t+dt)  and dr = r’ – r: 

 

 Figure 2 

Let’s say that during a very small time interval dt → 0 the vector r has rotated about an axis 

co-directional with a unity vector u by an angle dθ and ended up in the position r’.  Since u 

is our axis of rotation it is perpendicular to the plane in which the rotation took place (the 

plane formed by r and r’) so u is orthogonal to both r and r’. There are two unity vectors 

that are orthogonal to the plane formed by r and r’, they are shown on the picture as u and 

u’ since we’re still defining things we’ll choose the one that is co-directional with the cross 

product r x r’, following the rule of right-handed coordinate system. Thus because u is a 

unity vector |u| = 1 and is co-directional with r x r’ we can deduct it as follows: 

u =  (r x r’) / |r x r’| =  (r x r’) / (|r|| r’|sin(dθ)) =  (r x r’) / (|r|2 sin(dθ)) (Eq. 2.1) 

Since a rotation does not alter the length of a vector we used the property that| r’| = |r|.  

The linear velocity of the vector r can be defined as the vector: 

v = dr / dt  =  ( r’ - r) / dt   (Eq. 2.2) 

http://en.wikipedia.org/wiki/Right-hand_rule


Please note that since our dt approaches 0 so does dθ → 0, hence the angle between 

vectors r and dr (let’s call it α) can be found from the isosceles triangle contoured by r , r’ 

and dr:  

α = (π – dθ) / 2  and because dθ → 0 , then α → π/2  

What this tells us is that r is perpendicular to dr when dt → 0 and hence r is perpendicular 

to v since v and dr are co-directional from (Eq. 2.2):  

v ⊥ r (Eq. 2.21)  

We are now ready to define the angular velocity vector. Ideally such a vector should define 

the rate of change of the angle θ and the axis of the rotation, so we define it as follows: 

w = (dθ/dt ) u (Eq. 2.3) 

Indeed the norm of the w  is |w| = dθ/dt and the direction of w coincides with the axis of 

rotation u. Let’s expand (Eq. 2.3) and try to establish a relationship with the linear velocity 

v: 

Using (Eq. 2.3) and (Eq. 2.1): 

w = (dθ/dt ) u = (dθ/dt ) (r x r’) / (|r|2 sin(dθ))  

Now note that when dt → 0, so does dθ → 0 and hence for small dθ, sin(dθ) ≈ dθ , we end 

up with: 

w =  (r x r’) / (|r|2 dt)  (Eq. 2.4) 

Now because r’ = r + dr  , dr/dt = v , r x r = 0 and  using the distributive property of cross 

product over addition: 

w =  (r x (r + dr)) / (|r|2 dt) = (r x r + r x dr)) / (|r|2 dt) =  r x (dr/dt) /  |r|2 

And finally: 

w = r x v / |r|2 (Eq. 2.5) 

This equation establishes a way to calculate angular velocity from a known linear velocity v.   

We can easily prove the reverse equation that lets us deduct linear velocity from angular 

velocity: 

v = w x r  (Eq. 2.6) 



This can be proven simply by expanding w from (Eq. 2.5) and using vector triple product 

rule (a x b) x c = (a.c)b - (b.c)a. Also we’ll use the fact that v and r are perpendicular (Eq. 

2.21) and thus v.r = 0 

w x r = (r x v /  |r|2) x r = (r x v) x r /  |r|2 =  ((r.r) v + (v.r)r) /  |r|2 =  ( |r|2 v  + 0) |r|2 = v 

So we just proved that (Eq. 2.6) is true. Just to check (Eq. 2.6) intuitively - from Figure 2 

indeed v has the direction of w x r using the right hand rule and indeed v ⊥ r and v ⊥ w 

because it is in the same plane with r and r’. 

 

Part 3. Gyroscopes and angular velocity vector  

A 3-axis MEMS gyroscope is a device that senses rotation about 3 axes attached to the 

device itself (body frame). If we adopt the device’s coordinate system (body’s frame), and 

analyze some vectors attached to the earth (global frame), for example vector K pointing to 

the zenith or vector I pointing North - then it would appear to an observer inside the device 

that these vector rotate about the device center. Let wx , wy , wz be the outputs of a 

gyroscope expressed in rad/s - the measured rotation about axes x, y , z respectively. 

Converting from the raw output of the gyroscope to physical values is discussed for 

example here: http://www.starlino.com/imu_guide.html .   If we query the gyroscope at 

regular, small time intervals dt, then what gyroscope output tells us is that during this time 

interval the earth rotated about gyroscope’s x axis by an angle of dθx = wxdt, about y axis by 

an angle of dθy = wydt and about z axis by an angle of dθz = wzdt. These rotations can be 

characterized by the angular velocity vectors: wx = wx i = {wx , 0 , 0 }
T , wy = wy j = { 0 , wy , 0 }

T 

,  wz = wz k = { 0 , 0, wz }
T , where  i,j,k are versors of the local coordinate frame (they are co-

directional with body’s axes x,y,z respectively). Each of these three rotations will cause a 

linear displacement which can be expressed by using (Eq. 2.6):  

dr1 = dt v1 = dt (wx x r) ; dr2 = dt v2 = dt (wy x r) ; dr3 = dt v3 = dt (wz x r)  .   

The combined effect of these three displacements will be: 

dr = dr1 + dr2 + dr3  = dt (wx x r + wy x r + wz x r) = dt (wx + wy + wz) x r   (cross product is 

distributive over addition) 

Thus the equivalent linear velocity resulting from these 3 transformations can be expressed 

as: 

v = dr/dt = (wx + wy + wz) x r = w x r ,  where we introduce  w = wx + wy + wz  =  {wx , wy , wz } 

http://en.wikipedia.org/wiki/Triple_product
http://www.starlino.com/imu_guide.html


Which looks exactly like (Eq. 2.6) and suggests that the combination of three small 

rotations about axes x,y,z characterized by angular rotation vectors  wx , wy , wz  is 

equivalent to one small rotation characterized by angular rotation vector w = wx + wy + wz  

=  {wx , wy , wz }. Please note that we’re stressing out that these are small rotations, since in 

general when you combine large rotations the order in which rotations are performed 

become important and you cannot simply sum them up. Our main assumption that let us 

go from a linear displacement to a rotation by using (Eq. 2.6) was that dt is really small, and 

thus the rotations dθ and linear displacement dr are small as well. In practice this means 

that the larger the dt interval between gyro queries the larger will be our accumulated 

error, we’ll deal with this error later on. Now, since wx , wy , wz are the output of the 

gyroscope, then we arrive at the conclusion that in fact a 3 axis gyroscope  measures the 

instantaneous angular velocity of the world rotating about the device’s center. 

 

Part 4. DCM complimentary filter algorithm using 6DOF or 9DOF IMU sensors 

In the context of this text a 6DOF device is an IMU device consisting of a 3 axis gyroscope 

and a 3 axis accelerometer. A 9DOF device is an IMU device of a 3 axis gyroscope, a 3 axis 

accelerometer and a 3 axis magnetometer.  Let’s attach a global right-handed coordinate 

system to the Earth’s frame such that the I versor points North, K versor points to the 

Zenith and thus, with these two versors fixed, the J versor will be constrained to point 

West. 

 

Figure 3  



Also let’s consider the body coordinate system to be attached to our IMU device (acc_gyro 

used as an example),  

 

Figure 4  

We already established the fact that gyroscopes can measure the angular velocity vector. 

Let’s see how accelerometer and magnetometer measurements will fall into our model. 

Accelerometers are devices that can sense gravitation. Gravitation vector is pointing 

towards the center of the earth and is opposite to the vector pointing to Zenith KB. If the 3 

axis accelerometer output is  A = {Ax , Ay , Az } and we assume that there are no external 

accelerations or we have corrected them then we can estimate that KB = -A.  (See this IMU 

Guide for more clarifications http://www.starlino.com/imu_guide.html). 

Magnetometers are devices that are really similar to accelerometers, except that instead of 

gravitation they can sense the Earth’s magnetic North. Just like accelerometers they are not 

perfect and often need corrections and initial calibration. If the corrected 3-axis 

magnetometer output is M = {Mx , My , Mz }, then according to our model IB is pointing 

North , thus IB = M. 

 

Knowing IB and KB allows us calculate JB = KB x IB. 

Thus an accelerometer and a magnetometer alone can give us the DCM matrix , expressed 

either as DCMB or  DCMG   

DCMG = DCMBT = [IB, JB, KB]T 

The DCM matrix can be used to convert any vector from body’s(devices) coordinate system 

to the global coordinate system.  Thus for example if we know that the nose of the plane 

has some fixed coordinates expressed in body’s coordinate system as rB  = {1,0,0}, the we 

http://www.starlino.com/imu_guide.html


can find where the device is heading in other words the coordinates of the nose in global 

coordinate systems using  (Eq. 1.4): 

rG = DCMG  rB 

So far you’re asking yourself if an accelerometer and a magnetometer gives us the DCM 

matrix at any point in time, why do we need the gyroscope ? The gyroscope is actually a 

more precise device than the accelerometer and magnetomer are , it is used to “fine-tune” 

the DCM matrix returned by the accelerometer and magnetometer. 

Gyroscopes have no sense of absolute orientation of the device , i.e. they don’t know 

where north is and where zenith is (things that we can find out using the accelerometer  

and magnetometer), instead if we know the orientation of the device at time t, expressed 

as a DCM matrix  DCM(t) , we can find a more precise orientation DCM(t+dt) using the 

gyroscope , then the one estimated directly from the accelerometer and magnetometer 

direct readings which are subject to a lot of noise in form of external (non-gravitational) 

inertial forces (i.e. acceleration) or magnetically forces  that are not caused by the earth’s 

magnetic field. 

These facts call for an algorithm that would combine the readings from all three devices 

(accelerometer, magnetometer and gyroscope) in order to create our best guess or 

estimate regarding the device orientation in space (or space’s orientation in device’s 

coordinate systems), the two orientations are related since they are simply expressed using 

two DCM matrices that are transpose of one another (DCMG = DCMBT ). 

We’ll now go ahead and introduce such an algorithm. 

We’ll work with the DCM matrix that consists of the versors of the global (earth’s) 

coordinate system aligned on each row: 

 

                      

         
         
         

   

                          
                          
                          

 

   
   

   

   

  

If we read the rows of DCMG   we get the vectors IB, JB, KB.  We’ll work mostly with vectors 

KB (that can be directly estimated by accelerometer) and vector IB  (that can be directly 



estimated by the magnetometer). The vector JB is simply calculated as JB = KB x IB , since it’s 

orthogonal to the other two vectors (remember versors are unity vectors with same 

direction as coordinate axes). 

Let’s say we know the zenith vector expressed in body frame coordinates at time t0  and we 

note it as KB
0.  Also let’s say we measured our gyro output and we have determined that our 

angular velocity is w = {wx , wy , wz }. Using our gyro we want to know the position of our 

zenith vector after a small period of time dt has passed we’ll note it as KB
1G . And we find it 

using (Eq. 2.6): 

KB
1G ≈  KB

0 + dt v  = KB
0 + dt (wg x KB

0) = KB
0 + ( dθg x KB

0)  

Where we noted dθg = dt wg. Because wg is angular velocity as measured by the gyroscope. 

We’ll call dθg angular displacement. In other words it tells us by what small angle (given for 

all 3 axis in form of a vector) has the orientation of a vector KB changed during this small 

period of time dt. 

Obviously, another way to estimate KB is by making another reading from accelerometer so 

we can get a reading that we note as KB
1A . 

In practice the values KB
1G will be different from from KB

1A.  One was estimated using our 

gyroscope and the other was estimated using our accelerometer. 

Now it turns out we can go the reverse way and estimate the angular velocity wa or angular 

displacement dθa = dt wa , from the new accelerometer reading KB
1A , we’ll use  (Eq. 2.5): 

wa = KB
0 x va / | KB

0|2  

Now va = (KB
1A - K

B
0) / dt , and is basically the linear velocity of the vector KB

0. And | KB
0|2 = 1 

, since KB
0 is a unity vector. So we can calculate:  

dθa = dt wa = KB
0 x (KB

1A - K
B

0) 

The idea of calculating a new estimate KB
1  that combines both KB

1A and KB
1G is to first 

estimate  dθ as a weighted average of dθa and dθg : 

 

dθ =  (sa dθa +  sg dθg) / (sa + sg), we’ll discuss about the weights later on , but shortly they 

are determined and tuned experimentally in order to achieve a desired response rate and 

noise rejection. 

And then KB
1  is calculated similar to how we calculated KB

1G: 



KB
1 ≈  KB

0 + ( dθ x KB
0)  

Why we went all the way to calculate dθ and did not apply the weighted average formula 

directly to KB
1A and KB

1G ?  Because dθ can be used to calculate the other elements of our 

DCM matrix in the same way: 

IB
1 ≈  IB

0 + ( dθ x IB
0)  

JB
1 ≈  JB

0 + ( dθ x JB
0)  

The idea is that all three versors IB, JB, KB are attached to each other and will follow the 

same angular displacement dθ during our small interval dt. So in a nutshell this is the 

algorithm that allows us to calculate the DCM1 matrix at time t1 from our previous 

estimated DCM0 matrix at time t0. It is applied recursively at regular small time intervals dt 

and gives us an updated DCM matrix at any point in time. The matrix will not drift too much 

because it is fixed to the absolute position dictated by the accelerometer and will not be 

too noisy from external accelerations because we also use the gyroscope data to update it. 

So far we didn’t mention a word about our magnetometer. One reasons being that it is not 

available on all IMU units (6DOF) and we can go away without using it, but our resulting 

orientation will then have a drifting heading (i.e. it will not show if we’re heading north, 

south, west or east), or we can introduce a virtual magnetometer that is always pointing 

North, to introduce stability in our model. This situation is demonstrated in the 

accompanying source code that used a 6DOF IMU. 

Now we’ll show how to integrate magnetometer readings into our algorithm. As it turns 

out it is really simple since magnetometer is really similar to accelerometer (they even use 

similar calibration algorithms), the only difference being that instead of estimating the 

Zenith vector KB
 vector it estimates the vector pointing North  IB. Following the same logic 

as we did for our accelerometer we can determine the angular displacement according to 

the updated magnetometer reading as being: 

dθm = dt wm = IB
0 x (IB

1M - I
B

0) 

Now let’s incorporate it into our weighted average: 

dθ =  (sa dθa +  sg dθg +  sm dθm) / (sa + sg + sm) 

From here we go the same path to calculate the updated DCM1 

IB
1 ≈  IB

0 + ( dθ x IB
0)  ,   KB

1 ≈  KB
0 + ( dθ x KB

0)   and   JB
1 ≈  JB

0 + ( dθ x JB
0),  



In practice we’ll calculate JB
1 = KB

1 x IB
1, after correcting KB

1 and  IB
1  to be  perpendicular 

unity vectors again , note that all our logic is approximated and dependent on dt being 

small, the larger the dt the larger the error we’ll accumulate. 

So if vectors IB
0, JB

0, KB
0 form a valid DCM matrix , in other words they are orthogonal to 

each other and are unity vectors, then we can’t say the same about IB
1, JB

1, KB
1 , the 

formulas used for calculating them does not guarantee the orthogonality or length of the 

vector to be preserved , however we will not get a big error if dt is small, all we need to do 

is to correct them after each iteration.  

First let’s see how we can ensure that two vectors are orthogonal again. Let’s consider two 

unity vectors a and b that are “almost orthogonal” in other words the angle between these 

two vectors is close to 90°, but not exactly 90°. We’re looking to find a vector b’ that is 

orthogonal to a and that is in the same plane formed by the vectors a and b. Such a vector 

is easy to find as shown in Figure 5. First we find vector c = a x b that by the rules of cross 

product is orthogonal to both a and b and thus is perpendicular to the plane formed by a 

and b. Next the vector b’ = c x a is calculated as the cross product of c and a. From the 

definition of cross product  b’ is orthogonal to a and because it is also orthogonal to  c - it 

end up in the plane orthogonal to c , which is the plane formed by a and b. Thus b’ is the 

corrected vector we’re seeking that is orthogonal to a and belongs to the plane formed by 

a and b.  

  

Figure 5 

We can extend the equation using the triple product rule and the fact that a.a = |a| = 1: 

b’ = c x a = (a x b) x a = -a (a.b) + b(a.a) = b – a (a.b) =  b + d , where d = - a (a.b)  (Scenario 1, 

a is fixed b is corrected) 

http://en.wikipedia.org/wiki/Triple_product


You can reflect a little bit on the results … So we obtain corrected vector b’ from vector b 

by adding a “correction” vector d = - a (a.b). Notice that d is parallel to a. Its direction is 

dependent upon the angle between a and b,  for example in  Figure 5  a.b = cos (a,b) > 0 , 

because angle between a and b is less than 90°thus d has opposite direction from a and a 

magnitutde of cos(a,b) = sin(b,b’). 

In the scenario above we considered that vector a is fixed and we found a corrected vector 

b’ that is orthogonal to a. We can consider the symmetric problem – we fix b and find the 

corrected vector a’: 

a’ = a – b (b.a)  = a – b (a.b) = a + e, where e = - b (a.b) (Scenario 2, b is fixed a is corrected) 

Finally in the third scenario we want both vectors to move towards their corrected state, 

we consider them both “equally wrong”, so intuitively we apply half correction to both 

vectors from scenario 1 and 2: 

a’ = a – b (a.b) / 2  (Scenario 3, both a and b are corrected) 

b’ = b – a (a.b) / 2 

 

Figure 6 

This is an relatively easy formula to calculate on a microprocessor since we can pre-

compute  Err = (a.b)/2  and then use it to correct both vectors: 

a’ = a - Err * b  

b’ = b - Err * a 



Please note that we’re not proving that a’ and b’ are orthogonal in Scenario 3, but we 

presented the intuitive reasoning why the angle between a’ and b’ will get closer to 90°if 

we apply the above corrective transformations.  

Now going back to our updated DCM matrix that consists of three vectors IB
1, JB

1, we apply 

the following corrective actions before reintroducing the DCM matrix into the next loop: 

Err = ( IB
1 . JB

1 ) / 2 

IB
1

’  = IB
1 – Err * JB

1 

JB
1

’  = JB
1 – Err * IB

1 

IB
1

’’ = Normalize[IB
1

’] 

JB
1

’’ = Normalize[JB
1

’] 

KB
1

’’  = IB
1

’’ x  JB
1

’’ 

Where Normalize[a] =  a  / |a|  , is the formula calculating the unit vector co-directional 

with a.  

So finally our corrected DCM1 matrix can be recomposed from vectors IB
1

’’, JB
1

’’, KB
1

’’  that 

have been ortho-normalized (each vector constitutes a row of the updated and corrected 

DCM matrix). 

We repeat the loop to find DCM2 , DCM3 , or in general  DCM n , at any time interval n. 
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